Hydrogen @UL: 5 steps for a global vision of the hydrogen sector

Project Hy2Car : an Hybridized Hydrogen car

A new concept for an urban personal vehicle : clean (zero emission), energy efficient, low cost

Overall concept

- Clean : powered by a PEM fuel cell hybridized (PEMFC) with supercapacitors(SC)
- Energy efficient : propulsion system fitted to the usage
- Usage : second familial vehicle
- @ a competitive cost

CNrs

Technical concepts

- Based on an electric car : batteries are replaced by supercapacitors to hybridize the fuel cell in a direct way
- A single electronic converter is used \rightarrow (volume and mass reduction, breakdown limitation...)
- Fuels cell protection and mitigation of the aging of the FC are achieved

Research on the technology core

To enhance performances and durability : analysis of physical phenomena in the components of PEM Fuel Cells
Electrical engineering

Material sciences

Membranes, catalysts, bipolar plates...

Engineering

Fuels cells architecture, fluidic, thermal management

Electrical engineering

Systems for applications...

□ Automotive application

Model development

Experimental validation

Segmented cell → Local in-situ analyses

Heavy mobility, using hydrogen as an energy source Challenges for energy management

Challenges

- ▼ costs
- **A** reliability
- 🖌 🛦 lifespan

Research on smart energy management of fuel cell systems using power electronics

- High efficient, fault tolerant power architecture
- Hybridization with the storage system (batteries) : centralized vs distributed
- Architecture by power modules to ease the power ramp-up
- Multi stacks architecture for fuel cell to improve energy availability, efficiency and overall durability
- Optimization of the lifespan by smart management ; development of diagnostics /prognostics tools

Some further recommendations

- Forster ideation and emergence of new concepts based on prospective (oriented to future usage),
- Avoid too "techo-push" approaches, an prefer a need seekers one
- Take into account socio-technics concerns to ensure acceptance and development, ensure this
 points by developing living labs, involving researchers, users, industrials, deciders.
- Develop systemic analysis and modelling of hydrogen eco-systems, especially for mobility concerns : H2 production, compression, distribution, socio-économics actors, end-users
- Encourage and fund an active R&D&I on core technologies (fuels cells, hybridized fuel cells, smart management of energy, power electronics) to improve:
 - cost issues (both on core technologies and balance of plant)
 - aging performances (avoid aging damages, increase lifetime of systems)
 - energy performances : power density i.e. / unit of mass and volume

